por Alfonso de Terán Riva
Un poco de radiactividad

Estos días es noticia las candidaturas de diferentes ayuntamientos a tener un cementerio nuclear, y las numerosas y enérgicas protestas de gente en contra. Escuchando y leyendo declaraciones, puedo comprobar que hay bastante desconocimiento en general sobre todo lo que rodea la radiactividad, y se asocia inmediatamente a algo muy peligroso y dañino, tanto para el hombre como para el medio ambiente. Y sí, la radiactividad puede ser muy dañina, incluso letal, pero no es una fuerza irresistible que atraviesa todo. Se puede aislar, y de hecho, se hace.

¿Que es la radiactividad? Hace tiempo expliqué un poco qué es y que qué produce la radiactividad, pero no está de más recordarlo. Existen isótopos cuyos núcleos atómicos no son estables, por tener demasiada energía. La naturaleza tiende siempre a la configuración menos energética, por lo que estos isótopos desprenden energía en forma de radiación electromagnética o partículas subatómicas. Durante este proceso, el núcleo ve modificado su número de protones o neutrones (o ambos) Si como resultado, se modifica el número de neutrones, se convierte en otro isótopo del mismo elemento. Y si se modifica el número de protones, el elemento químico cambia (la transmutación de la materia anhelada por los antiguos alquimistas)

Existen tres tipos de radiación: la radiación alfa, que consiste en núcleos de helio (dos protones y dos neutrones juntitos) la radiación beta, que consiste en electrones o positrones, y la radiación gamma, que es radiación electromagnética (es decir, fotones) La radiación alfa es muy energética, pero fácilmente bloqueable. Bastan unas hojas de papel para impedir su paso (pensad que después de todo, aunque ligeros, se trata de núcleos atómicos enteros) La radiación beta es algo más penetrante, pero sólo un poco más. Una lámina de aluminio puede deneterla sin problemas. La radiación gamma ya es harina de otro costal. Es muy penetrante y se necesitan barreras bastante más gruesas, y de materiales muy concretos, como el plomo o el hormigón.

¿Por qué es dañina la radiactividad? Bueno, la radiactividad es dañina porque es ionizante, es decir, es capaz de ionizar átomos. ¿Y eso qué quiere decir? Pues que cuando la radiación atraviesa la materia, puede arrancar electrones de los átomos que la componen, alterando algunas propiedades. Si eso ocurre con átomos que forman parte de una estructura celular, ésta puede resultar dañada. Y dependiendo de dónde esté el daño y de su cantidad, será más o menos perjudicial para el ser vivo afectado.

He mencionado la cantidad, y es que la radiactividad no escapa a la cita atribuida a Paracelso: todo es veneno, nada es veneno; la diferencia está en la dosis (o algo así; si alguno conoce la cita exacta, le agradecería que me corrigiera) El cuerpo humano puede soportar pequeñas dosis de radiactividad, y de hecho, las soporta diariamente. Existe radiactividad en la naturaleza, que no tiene nada que ver con la actividad humana ¿Os acordáis del artículo en el que comenté la datación por carbono-14? Todos los seres vivos (incluidos nosotros) tienen una cantidad de carbono-14 formando parte de su estructura, y el carbono-14 es un isótopo radiactivo. Y no es el único que podemos encontrar en la naturaleza.

En otro orden de cosas, el hombre utiliza elementos radiactivos y radiaciones ionizantes, para otros fines además de la energía nuclear, como por ejemplo en el campo de la medicina. Los famosos rayos X que se utilizan para realizar radiografías, es radiación ionizante. Y precisamente por eso el paciente se queda solo en la sala, en el momento de la irradiación (una única dosis no es dañina, pero una exposición diaria es otra cosa) La radioterapia utilizada en tratamientos para el cáncer consiste precisamente en matar los tejidos afectados mediante radiación ionizante (pudiendo utilizarse material radiactivo, dependiendo del tipo de tratamiento) Y hay métodos de diagnóstico que consisten en inyectar directamente un isótopo radiactivo en el paciente, que luego es fácilmente detectable desde el exterior, proporcionando información de por dónde va. Por supuesto, todos estos elementos son manipulados con las debidas precauciones, y las salas donde se utilizan están convenientemente apantalladas.

Antes he mencionado que los isótopos radiactivos lo son porque sus núcleos tienen demasiada energía, y deben liberarla. ¿Qué ocurre cuando ya han emitido esa energía que les sobra? Todos los isótopos radiactivos, al emitir radiación se convierten en otros (recordad que el número de protones y neutrones del núcleo se ve alterado) que pueden ser radiactivos o no. Pero si es radiactivo tendrá que ir decayendo a su vez en otro. Finalmente, todo material radiactivo termina decayendo (directa o indirectamente) a isótopos estables no radiactivos. Existe un concepto llamado periodo de semidesintegración, llamado también semivida, que es intrínseco a cada isótopo radiactivo. Nos dice cuánto tiempo pasa hasta que la mitad del material ha decaído en otro isótopo diferente. Cuanto mayor sea el periodo de semidesintegración, más duradero será el material radiactivo, y cuanto menor sea, antes desaparecerá. Fijaos que todos los materiales radiactivos terminan desintegrándose con el tiempo, precisamente porque sus núcleos son inestables. No ocurre así con los elementos no radiactivos, que pueden durar indefinidamente.

Bueno, una vez hemos asimilado todo esto, vayamos el punto de la polémica: los residuos nucleares y su almacenamiento. En una central nuclear se fisionan elementos radiactivos (por lo general, uranio) para obtener energía. Para ello, el combustible nuclear se dispone en una serie de varillas que se intoducen en el reactor. Durante el proceso, se producen entre otras cosas, otros elementos radiactivos. Una varilla «gastada» contiene dichos elementos, además de parte del combustible nuclear original, que no se ha fisionado. Por otro lado, hay partes del reactor, herramientas y otros utensilios, que tras tanta exposición a la radiación, terminan por volverse algo radiactivos (no porque la radiactividad sea algo «contagioso», sino porque algunos núcleos atómicos, al absorber la radiación, sufren el proceso inverso, adquieren energía y se vuelven inestables) Y no sólo una central nuclear produce residuos radiactivos, sino que un hospital también puede generarlos, como hemos visto.

Los residuos radiactivos se dividen en tres grupos, según su emisión de radiación y su periodo de semidesintegración: de baja actividad, de media actividad y de alta actividad, siendo estos últimos los más peligrosos. Todos estos residuos deben ubicarse en un lugar seguro hasta que decaigan en elementos no radiactivos, y para eso están los vulgarmente llamados cementerios nucleares.

Las expresiones desechos nucleares y cementerio nuclear evocan algún tipo de bidón metálico lleno de un líquido brillante, que se vierte de cualquier forma en algún lugar condenado. Puede que hace unas décadas esta visión no estuviera demasiado alejada de la realidad, pero a día de hoy, el tratamiento de estos residuos es bien distinto. Precisamente, la misión de estos cementerios es almacenar estos residuos de forma que no causen daño al hombre y al medio ambiente en general. Hay dos tipos de estos almacenes: superficiales, para residuos de baja y media actividad, y profundos, para los de alta actividad. Estos almacenes no son simples naves industriales donde se amontonan los residuos, sino que están formados por paredes muy gruesas de hormigón, que impiden la salida de la radiación.

Los residuos en sí, también se recubren de hormigón para minimizar la radiación que alcanza el exterior (no olvidéis que se transportan de alguna manera hasta que llegan a su almacenamiento) Y así recubiertos, se introducen en el almacén, que proporciona aún más aislamiento. Si se toman todas las medidas necesarias, la radiactividad en el exterior del cementerio nuclear no debería ser superior a la radiactividad natural.

Con esto no quiero pintarlo todo de rosa. Los materiales radiactivos pueden llegar a ser muy peligrosos, pero precisamente por eso, se toman enormes medidas de seguridad en su uso. Y si se cumplen, no debería haber ningún problema.

© Alfonso de Terán Riva, (1.291 palabras) Créditos
Publicado originalmente en MalaCiencia el 3 de febrero de 2010
CC by-nc 2.5